

rition CCONTROLOGICARE Optimal Instructional care for all

THE POWER OF CONCERTED EFFORTS AGAINST MALNUTRITION

Vereniging van Dietistel

Europe's Beating Cancer Plan - Integrated Nutrition Cancer Care: drivers for successful local implementations

Alessandro Laviano European Union's INC2 Thematic Network

Department of Translational and Precision Medicine Sapienza University, Rome, Italy

alessandro.laviano@uniroma1.it

My disclosures

- Honoraria for independent lectures at industry-sponsored events.
- Member Nutricia Oncology advisory board.
- Member DSM advisory board.
- Member Smartfish advisory board.
- Consultant for Abbott, BBraun, Nestlé Health Science.

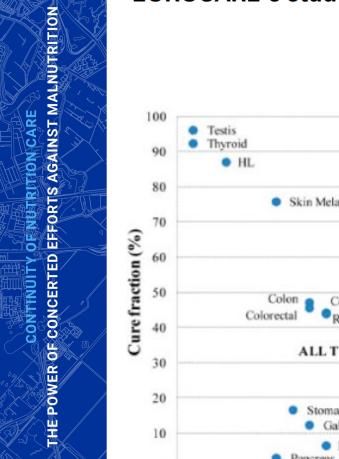
Unmet needs in patients with cancer

Han River, Seoul, June 2023

IME

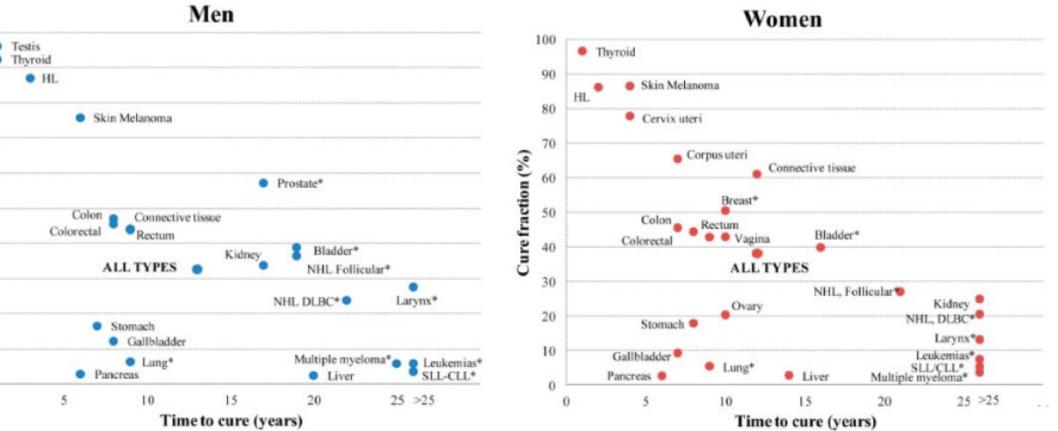
Cancer in all sexes ^a	Rate in 1971	Rate in peak year (year)	Rate in 2019	Rate difference from 1971	Rate difference	Rate ratio (95% CI) ^b		
					from peak year	2019:1971	2019:peak year	
All sites	198.9	215.1 (1991)	146.0	-52.9	-69.1	0.73 (0.73-0.74)	0.68 (0.68-0.68)	
Lung and bronchus	38.2	59.1 (1993)	33.4	-4.8	-25.7	0.87 (0.87-0.88)	0.56 (0.56-0.57)	
Female breast	31.7	33.2 (1989)	19.4	-12.3	-13.8	0.61 (0.60-0.62)	0.58 (0.58-0.59)	
Prostate	30.3	39.3 (1993)	18.4	-11.9	-20.9	0.61 (0.60-0.62)	0.47 (0.46-0.48)	
Colon and rectum	28.8	NA	12.8	-16.0	NA	0.44 (0.44-0.45)	NA	
Pancreas	10.7	NA	11.0	0.3	NA	1.03 (1.01-1.05)	NA	
Ovary	10.1	NA	6.0	-4.1	NA	0.59 (0.58-0.61)	NA	
Stomach	9.7	NA	2.8	-6.9	NA	0.28 (0.28-0.29)	NA	
Leukemia	8.4	NA	5.9	-2.5	NA	0.69 (0.68-0.71)	NA	
Cervix	7.1	NA	2.2	-4.9	NA	0.31 (0.29-0.32)	NA	
Non-Hodgkin lymphoma	5.7	8.9 (1997)	5.0	-0.7	-3.9	0.89 (0.86-0.91)	0.56 (0.55-0.58)	
Urinary/bladder	5.6	NA	4.1	-1.5	NA	0.73 (0.71-0.75)	NA	
Oral cavity and pharynx	4.4	NA	2.5	-1.9	NA	0.57 (0.55-0.58)	NA	
Brain and other nervous system	4.0	4.9 (1991)	4.3	0.3	-0.6	1.08 (1.05-1.10)	0.87 (0.85-0.90	
Kidney and renal pelvis	3.5	4.3 (1991)	3.4	-0.1	-0.9	0.96 (0.93-0.99)	0.79 (0.77-0.81)	
Esophagus	3.5	4.4 (2005)	3.8	0.3	-0.6	1.08 (1.05-1.11)	0.86 (0.84-0.88	

Abbreviation: NA, not applicable.

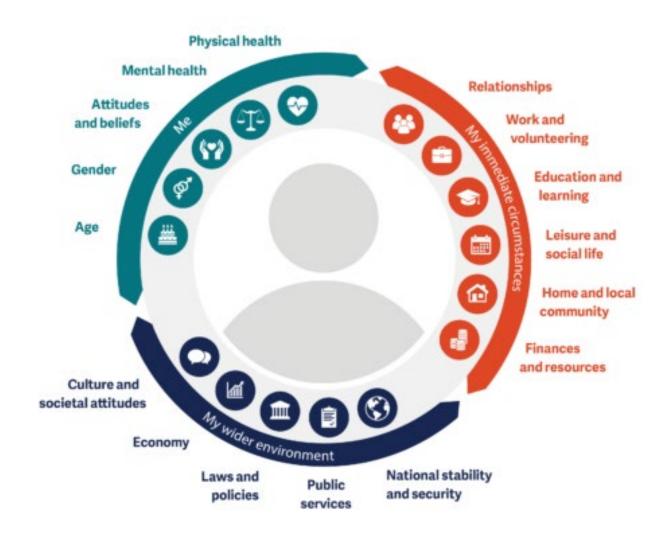

^b Rate ratios and 95% CIs are calculated using unrounded rates to 9 decimal places.

^a Rates for prostate, ovary, and cervix cancers are sex specific.

Cancer cure for 32 cancer types: results from the EUROCARE-5 study



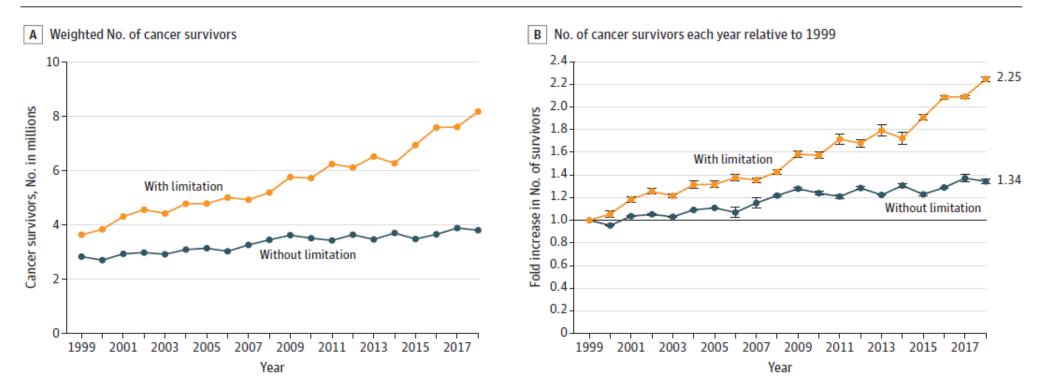
International Journal of Epidemiology, 2020, Vol. 49, No. 5


0

0

optimal nutritional care for all

Quality of life

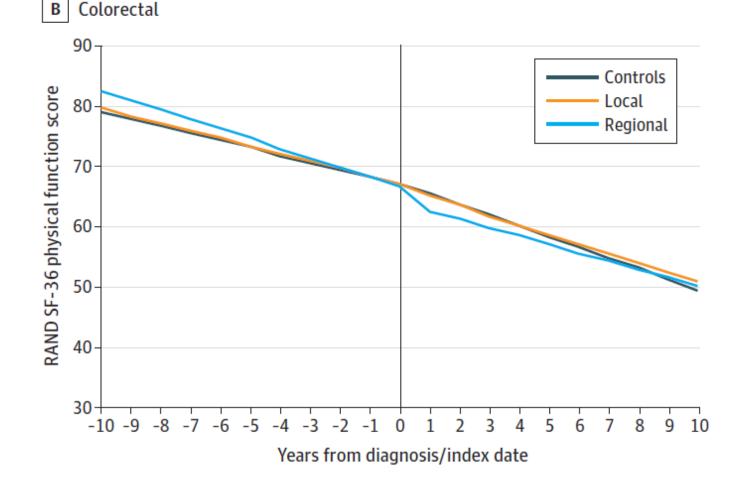

Trends in the Prevalence of Functional Limitations Among US Cancer Survivors, 1999-2018

Vishal R. Patel, BS S. M. Qasim Hussaini, MD, MS Anne H. Blaes, MD, MS Alicia K. Morgans, MD, MPH Alex B. Haynes, MD, MPH Adewole S. Adamson, MD, MPP Arjun Gupta, MD

optimal nutritional care for all

JAMA Oncology Published online May 11, 2023

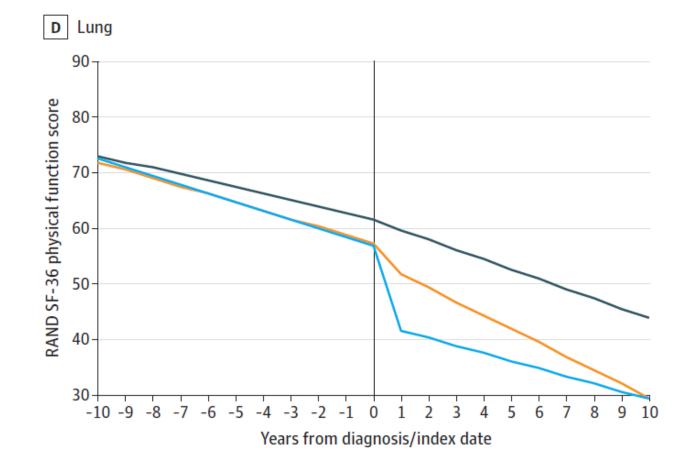
Figure. Trends in the Number of Cancer Survivors Reporting Functional Limitation in the US, 1999 to 2018



Long-term Trajectories of Physical Function Decline in Women With and Without Cancer

Elizabeth M. Cespedes Feliciano, ScD, SM; Sowmya Vasan, MS; Juhua Luo, PhD; Alexandra M. Binder, ScD; Rowan T. Chlebowski, MD, PhD; Charles Quesenberry, PhD; Hailey R. Banack, Phd; Bette J. Caan, DrPH; Electra D. Paskett, PhD; Grant R. Williams, MD, MSPH; Ana Barac, MD, PhD; Andrea Z. LaCroix, PhD; Ulrike Peters, PhD; Kerryn W. Reding, PhD, MPH; Kathy Pan, MD; Aladdin H. Shadyab, PhD, MS, MPH; Lihong Qi, PhD; Garnet L. Anderson, PhD

JAMA Oncology Published online January 19, 2023



Long-term Trajectories of Physical Function Decline in Women With and Without Cancer

Elizabeth M. Cespedes Feliciano, ScD, SM; Sowmya Vasan, MS; Juhua Luo, PhD; Alexandra M. Binder, ScD; Rowan T. Chlebowski, MD, PhD; Charles Quesenberry, PhD; Hailey R. Banack, Phd; Bette J. Caan, DrPH; Electra D. Paskett, PhD; Grant R. Williams, MD, MSPH; Ana Barac, MD, PhD; Andrea Z. LaCroix, PhD; Ulrike Peters, PhD; Kerryn W. Reding, PhD, MPH; Kathy Pan, MD; Aladdin H. Shadyab, PhD, MS, MPH; Lihong Qi, PhD; Garnet L. Anderson, PhD

JAMA Oncology Published online January 19, 2023

Association of Quality-of-Life Outcomes in Cancer Drug Trials With Survival Outcomes and Drug Class

Joseph N. Samuel, PharmD, MSc; Christopher M. Booth, MD; Elizabeth Eisenhauer, MD; Michael Brundage, MD, MSc; Scott R. Berry, MD; Bishal Gyawali, MD, PhD

Table 2. Overall Survival and Progression-Free Survival in Trials Also Reporting Quality-of-Life Outcomes (n = 45)

	Quality-of-life outcome, No. of trials						
Outcome	Improved	No difference	Worsened				
Overall survival							
Improved	7	10	0				
No difference	3	16	4				
No data	1	2	2				
Progression-free survival							
Improved	6	17	4				
No difference	3	9	2				
Worse	0	1	0				
No data	2	1	0				

JAMA Oncology Published online April 28, 2022

Journal of Clinical Epidemiology 139 (2021) 80-86

Informative censoring due to missing data in quality of life was inadequately assessed in most oncology randomized controlled trials

Timothée Olivier^{a,*}, Alyson Haslam^b, Vinay Prasad^b

What is new?

Key findings

 missing data in quality of life (QoL) are adequately reported in 7.4% of oncology randomized controlled trials (RCTs).

What is the implication, what should change now

 first study with a 5-year period inclusion and with a focus on oncology RCTs. Informative censoring is an underreported bias in QoL.

What is the implication and what should change now?

• investigators, authors, and journal's editors should enforce higher requirements regarding the reporting of missing QoL data.

Sarcopenia and health-related quality of life: A systematic review and meta-analysis

Journal of Cachexia, Sarcopenia and Muscle (2023)

SMD

-1.93 [-2.30; -1.55]

-0.50 [-0.75; -0.25]

-0.72 [-1.26; -0.17]

-0.83 [-1.16; -0.50]

-0.78 [-1.08; -0.48]

-0.01 [-0.39; 0.38]

-0.52 [-0.86; -0.18]

-1.03 [-1.35; -0.71]

-1.13 [-1.59; -0.66]

-0.84 [-1.13; -0.55]

-0.58 [-0.85; -0.32]

-0.49 [-1.08; 0.10]

-0.72 [-1.17; -0.27]

-1.17 [-1.73; -0.60]

-0.49 [-0.94; -0.04]

-0.98 [-1.31; -0.65]

-0.67 [-1.27; -0.07]

-0.43 [-1.12; 0.27]

-0.62 [-1.14; -0.10]

-0.50 [-0.89; -0.11]

-2.11 [-2.52; -1.70]

-1.54 [-1.99; -1.09]

-0.40 [-0.61; -0.20]

-3.37 [-3.94; -2.81] -0.28 [-0.46; -0.11] -0.43 [-0.89; 0.03]

-0.64 [-1.13; -0.15]

-0.64 [-1.13, -0.15] -0.73 [-1.30; -0.16] -0.16 [-0.54; 0.22] 0.73 [0.17; 1.28] -0.35 [-0.82; 0.11] -0.04 [-0.33; 0.25]

-1.42 [-2.21; -0.62]

-0.03 [-0.81; 0.75]

-1.35 [-1.68; -1.02]

-0.65 [-1.05; -0.25]

-0.19 [-0.24; -0.14]

-0.84 [-1.11; -0.58]

-1.19 [-1.54; -0.84]

-0.03 [-0.56; 0.50]

-0.37 [-0.47; -0.26]

-0.36 [-0.71; -0.01]

-0.47 [-0.81; -0.12]

-1.25 [-1.53; -0.97] 2.4% -1.91 [-2.22; -1.59] 2.3% -0.76 [-0.95; -0.57] 100.0%

95%-Cl Weight

2.3%

2.4%

2.1%

2.3%

2.3%

2.3%

2.3%

2.3%

2.2%

2.4%

2.4%

2.0%

2.2%

2.1%

2.2%

2.3%

2.0%

1.9%

2.1%

2.3%

2.2%

2.2%

2.4%

2.1% 2.4% 2.2%

2.1%

2.0% 2.3% 2.1% 2.2% 2.4%

1.8%

1.8%

2.3%

2.2%

2.5%

2.4%

2.3%

2.1%

2.5%

2.3%

2.3%

		Sarcopenic				Controls			Standardised Mean			
s	Study	Total	Mean	SD	Total	Mean	SD		D	ifferenc	e	
А	Nekna, 2019	58	50.32	8.5800	118	73 75	13.5100			1		
	Beaudart, 2015			29.2000			25.9000					
	Beaudart, 2017			16,5000			12.8000		-			
	Beaudart, 2017	43	55.90	13.4000			14.9000		+	÷		
В	Beaudart, 2018	50	56.30	13.4000	337	68.00	15.2000		+	÷		
C	Chew, 2020	31	0.94	0.1090	169	0.94	1.1000			-		
D	DeSouzaOrlandi, 2018	43	44.52	31.8500	183	60.85	31.1600			<u>.</u>		
D	DeSouzaOrlandi, 2022	55	55.50	18.6700	166	74.40	18.0600		-+	1		
E	rdogan, 2021	27	50.00	16.0000	73	68.90	16.9000		+	÷		
F	abregaCuadros, 2020			15.0100			15.2500		+	+		
	abregaCuadros, 2021			22.8700			19.7600			÷		
	Gasparik, 2017			16.5000			17.1000			2		
	Seerinck, 2018			16.4000			13.3000		_	<u>;</u>		
	Seerinck, 2020			14.8000			14.9000		- +	t_		
	Beerinck, 2021			20.6000			24.3000					
	Buillamon-Escudero, 2022			9.6000			8.4000		-			
	han, 2019			2.5800			2.1400		_	1		
	nai, 2022	11 24	0.86	0.1500	30	0.91 0.77	0.1000		_	100		
	Kitamura, 2022 Konstantynowicz, 2018			16.5000	40		0.0600 17.1000					
	.e, 2021			13.3300			16.3000		-			
	.ee, 2022			18.0100			6.6100		-			
	.osa-Reyna, 2020		0.87			0.92						
	lahmoodi, 2022		39.37				7.8500					
	Manrique-Espinoza, 2017			25.3400			24.1400					
	largues, 2018, Female			8.5000			7.1000					
	Marques, 2018, Men			7.5000			6.3000		-	<u>i</u>		
	latijevic, 2020	12	54.80	14.1000	687	64.80	13.7000		-	÷		
N	lijnarends, 2015	53	0.78	0.1900	53	0.81	0.1800					
N	Iontero-Erasquin, 2022	16	67.97	11.9900	70	58.50	13.1200				-	
N	Iori, 2019			14.8000	292	46.20	11.9000			֥+		
	Dzturk, 2018			29.9200			29.0600			14		
	Patel, 2013			8.6400			2.8900			† 🗋		
	SilviaNeto, 2016			13.1800			15.4200			<u> </u>		
	Simsek, 2022	88		0.3300	84		0.4200		-+-	1		
	Singhal, 2019			1.0800	47		0.8400		-			
	Smith, 2022			28.0200						: •		
	akahashi, 2018			7.6000			5.4000			T		
	sekoura, 2020			11.0500 0.0830			14.4000					
	Jmegaki, 2022 /eronese, 2022			17.3000			11.7000					
	Voo, 2018, Female			25.9000			23.9000					
	Voo, 2018, Men			28.9000			22.3000			<u> </u>		
	alcin, 2017			21.6500			18.7700		-+-			
	00, 2020			12.8800			13.8800		-			
_												
	Random effects model	4108			26214					•		
	leterogeneity: $I^2 = 93\%$, $\tau^2 = -7.7$			01					2		2	
1	estitut overall effect. $Z = -7.7$	o (p <	0.01)						-2	0	2	

Low muscle mass, malnutrition, sarcopenia, and associations with survival in adults with cancer in the UK Biobank cohort

N. Kiss et al.

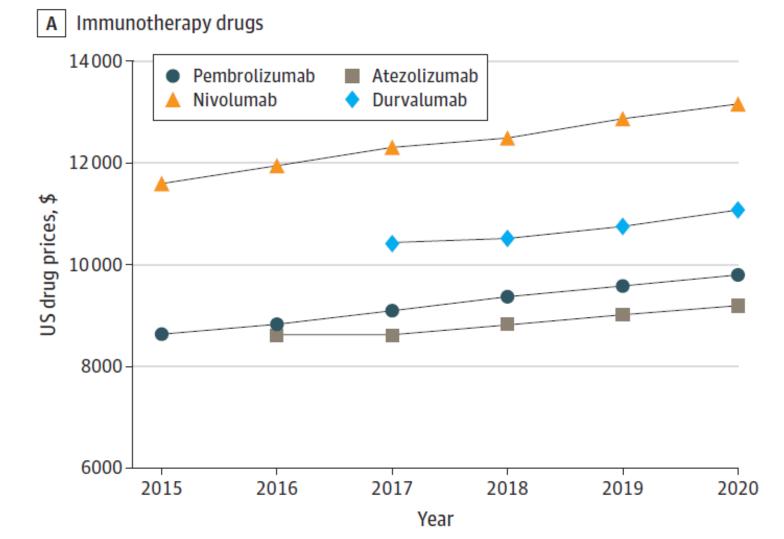
Journal of Cachexia, Sarcopenia and Muscle (2023)

 Table 5
 Association between low muscle mass (using ALST), malnutrition, probable sarcopenia, and sarcopenia with all-cause and cancer-specific mortality (N = 4122)

	All-cause mor	tality ^a		Cancer-specific mortality ^a			
Condition	Death (<i>n/N</i>) Hazard ratio (95%		P-value	Death (n/N)	Hazard ratio (95% CI)	P-value	
ALST/height ²							
Low	35/68	1.9 (1.3, 2.8)	0.001	29/68	2.0 (1.3, 3.2)	0.001	
Normal	859/4054	1.0 (reference)		711/4054	1.0 (reference)		
ALST/BMI							
Low	108/327	1.4 (1.1, 1.7)	0.002	84/327	1.4 (1.1, 1.8)	0.006	
Normal	786/3795	1.0 (reference)		656/3795	1.0 (reference)		
Malnutrition (ALST/height ²)							
Severe malnutrition	78/163	2.8 (2.2, 3.6)	<0.001	65/163	2.9 (2.2, 3.7)	<0.0005	
Not severe malnutrition	816/3959	1.0 (reference)		675/3959	1.0 (reference)		
Malnourished ^b	118/254	2.5 (2.0, 3.1)	<0.001	97/254	2.6 (2.1, 3.2)	<0.0005	
Well nourished	776/3868	1.0 (reference)		643/3868	1.0 (reference)		
Malnutrition (ALST/BMI)	100/040			00/040		0 0005	
Severe malnutrition	109/243	2.7 (2.2, 3.4)	<0.001	88/243	2.7 (2.1, 3.4)	< 0.0005	
Not severe malnutrition	785/3879	1.0 (reference)	0.004	652/3879	1.0 (reference)	0 0005	
Malnourished	176/460	2.2 (1.8, 2.6)	<0.001	145/460	2.3 (1.9, 2.7)	<0.0005	
Well nourished	718/3662	1.0 (reference)		595/3662	1.0 (reference)		
Sarcopenia (ALST/height ²)	610		0.010	C 10		0.000	
Sarcopenic	6/9	2.9 (1.3, 6.5)	0.013	6/9	3.6 (1.6, 8.2)	0.003	
Probable sarcopenia	82/275	1.3 (1.0, 1.6)	0.022	62/275	1.2 (0.9, 1.6)	0.128	
Non-sarcopenic	806/3838	1.0 (reference)		672/3838	1.0 (reference)		
Sarcopenia (ALST/BMI)		1 ((1 0 2 4)	0.022	16/54	1 5 (0 0 1 7)	0.126	
Sarcopenic	23/54	1.6 (1.0, 2.4)	0.032	16/54	1.5 (0.9, 1.7)	0.136	
Probable sarcopenia	65/230	1.3(1.0, 1.7)	0.048	52/230	1.5(0.9, 2.4)	0.113	
Non-sarcopenic	806/3838	1.0 (reference)		672/3838	1.0 (reference)		

ALST, appendicular lean soft tissue.

^aAdjusted for BMI (height-adjusted measures only), age, sex, time since cancer diagnosis, smoking status, alcohol intake, and number of co-morbidities.


^bMalnutrition includes both mild-moderate and severe malnutrition.

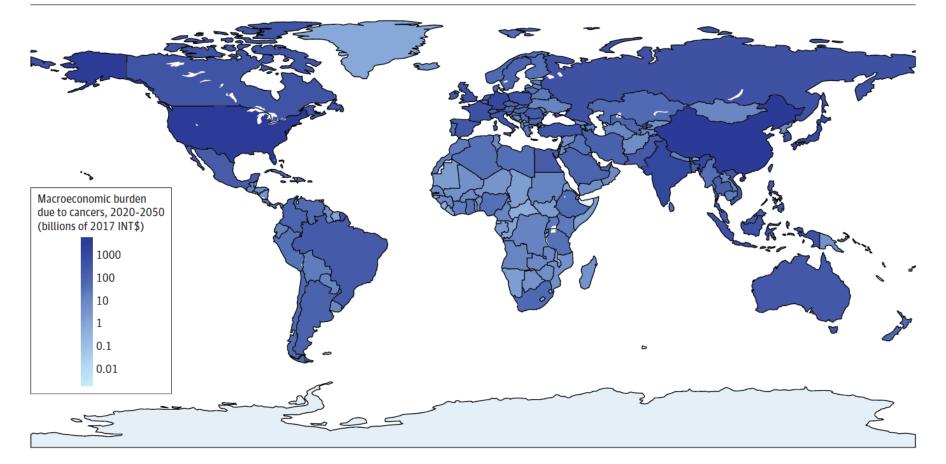
Financial toxicity

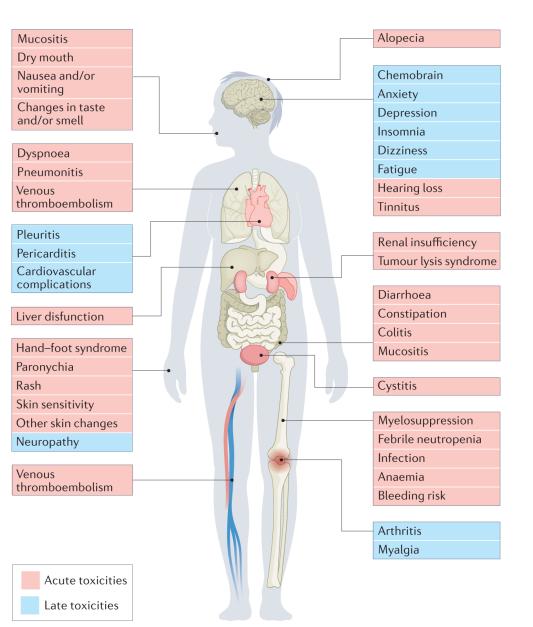
Trends in Prices of Drugs Used to Treat Metastatic Non-Small Cell Lung Cancer in the US From 2015 to 2020

Aakash Desai, MBBS, MPH; Caleb Scheckel, DO; Chelsee J. Jensen, PharmD, RPh; Jacob Orme, MD, PhD; Colt Williams, MD; Nilay Shah, MPH; Konstantinos Leventakos, MD, PhD; Alex A. Adjei, MD, PhD

JAMA Network Open. 2022;5(1):e2144923.

optimal nutritional care for all


Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories From 2020 to 2050


Simiao Chen, ScD; Zhong Cao, BE; Klaus Prettner, PhD; Michael Kuhn, PhD; Juntao Yang, PhD; Lirui Jiao, BA; Zhuoran Wang, BSc; Weimin Li, MD; Pascal Geldsetzer, MD, ScD; Till Bärnighausen, MD, ScD; David E. Bloom, PhD; Chen Wang, MD, PhD

optimal nutritional care for all

JAMA Oncology April 2023 Volume 9, Number 4

Figure 1. Macroeconomic Burden Due to Cancers From 2020 to 2050

Treatment-associated toxicity

optimal

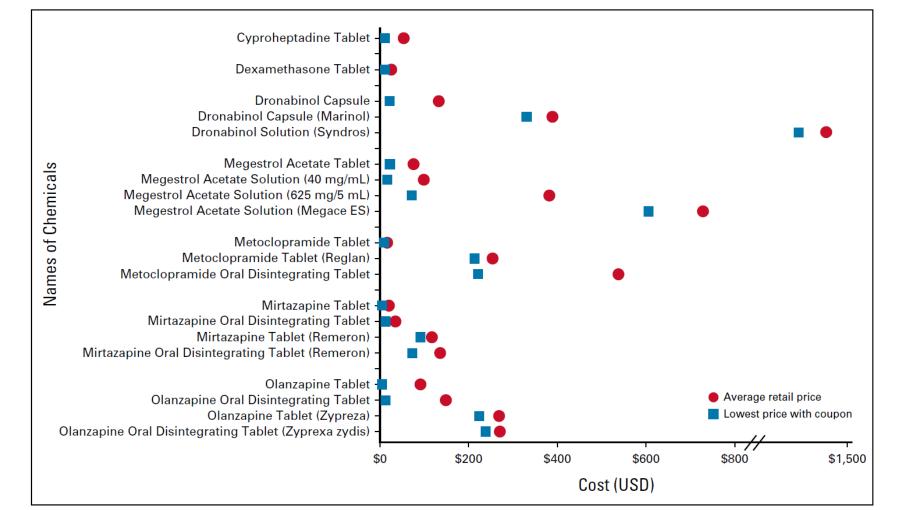
nutritional care

for all

Identifying Patients Whose Symptoms Are Underrecognized During Treatment With Breast Radiotherapy

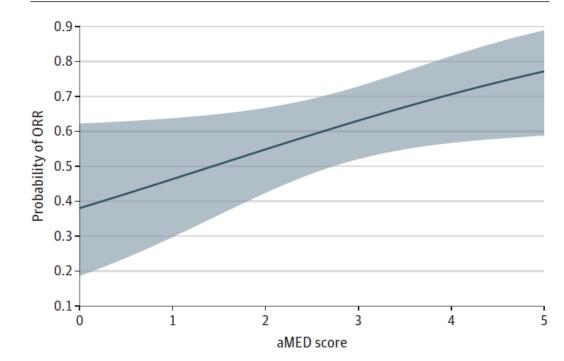
Reshma Jagsi, MD, DPhil; Kent A. Griffith, MS, MPH; Frank Vicini, MD; Thomas Boike, MD; Michael Dominello, DO; Gregory Gustafson, MD; James A. Hayman, MD, MBA; Jean M. Moran, PhD; Jeffrey D. Radawski, MD; Eleanor Walker, MD; Lori Pierce, MD; for the Michigan Radiation Oncology Quality Consortium

100 Observations with underrecognized 80 symptoms, % 60 40 20 0 Frequent bother Moderate/ Frequent bother Substantial severe pain from pruritus from edema fatigue


JAMA Oncology June 2022 Volume 8, Number 6

Financial Burden of Drugs Prescribed for Cancer-Associated Symptoms

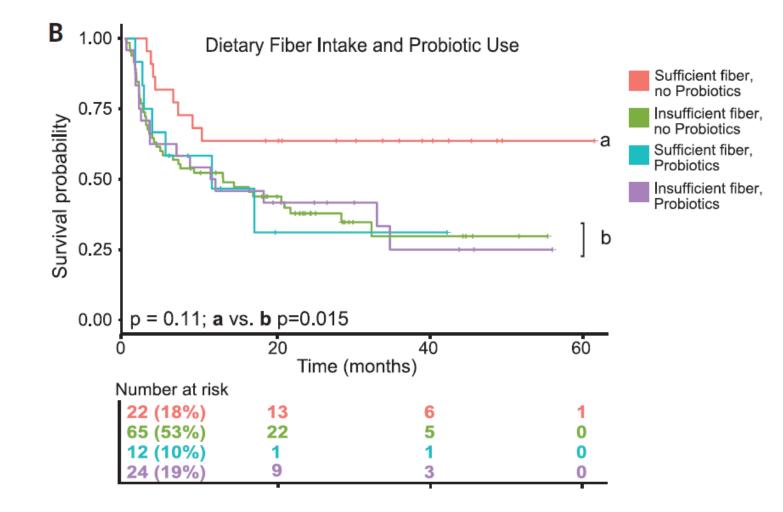
JCO Oncol Pract OO. © 2021 by American Society of Clinical Oncology


Arjun Gupta, MD¹; Leonce Nshuti, MS²; Udhayvir S. Grewal, MD³; Ramy Sedhom, MD⁴; Devon K. Check, PhD⁵; Helen M. Parsons, PhD⁶; Anne H. Blaes, MD¹; Beth A. Virnig, PhD, MPH⁶; Maryam B. Lustberg, MD⁷; Ishwaria M. Subbiah, MD⁸; Ryan D. Nipp, MD⁹; Sydney M. Dy, MD¹⁰; and Stacie B. Dusetzina, PhD²

Association of a Mediterranean Diet With Outcomes for Patients Treated With Immune Checkpoint Blockade for Advanced Melanoma

Laura A. Bolte, MSc; Karla A. Lee, MD; Johannes R. Björk, PhD; Emily R. Leeming, PhD; Marjo J. E. Campmans-Kuijpers, PhD; Jacco J. de Haan, MD; Arnau Vich Vila, PhD; Andrew Maltez-Thomas, PhD; Nicola Segata, PhD; Ruth Board, MD; Mark Harries, MD, PhD; Paul Lorigan, MD, PhD; Elisabeth G. E. de Vries, MD, PhD; Paul Nathan, MD, PhD; Rudolf Fehrmann, MD; Véronique Bataille, MD, PhD; Tim D. Spector, MD, PhD; Geke A. P. Hospers, MD, PhD; Rinse K. Weersma, MD, PhD

> Figure. Association Between Overall Response Rate (ORR) and the Alternate Mediterranean Diet Score (aMED) Across Both Cohorts



Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response

Spencer et al., Science 374, 1632-1640 (2021)

optimal

nutritional care

for all

Policy Brief handed over to John F. Ryan, Director Public Health, DG Santé (April 2023)

Conclusions

- Precision oncology is not personalized oncology.
- PRO should inform anticancer therapies.
- Implementation of nutritional care should address unmet needs:
 - Quality of life
 - Financial toxicity
 - Increased toxicity
 - Poor response to treatments in real life

Highlighting the unmet needs is key to successful implementation